This HTML5 document contains 17 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n2http://qudt.org/vocab/quantitykind/
dctermshttp://purl.org/dc/terms/
n3http://qudt.org/schema/qudt/
n6http://qudt.org/vocab/dimensionvector/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n5http://qudt.org/2.1/vocab/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
xsdhhttp://www.w3.org/2001/XMLSchema#

Statements

Subject Item
n2:PlanckFunction
rdf:type
n3:QuantityKind
rdfs:label
Planck Function
rdfs:isDefinedBy
n5:quantitykind
rdfs:seeAlso
n2:SpecificEnergy n2:SpecificEnthalpy n2:SpecificGibbsEnergy n2:SpecificHelmholtzEnergy n2:SpecificInternalEnergy n2:MassieuFunction
dcterms:description
The \(\textit{Planck function}\) is used to compute the radiance emitted from objects that radiate like a perfect "Black Body". The inverse of the \(\textit{Planck Function}\) is used to find the \(\textit{Brightness Temperature}\) of an object. The precise formula for the Planck Function depends on whether the radiance is determined on a \(\textit{per unit wavelength}\) or a \(\textit{per unit frequency}\). In the ISO System of Quantities, \(\textit{Planck Function}\) is defined by the formula: \(Y = -G/T\), where \(G\) is Gibbs Energy and \(T\) is thermodynamic temperature.
n3:expression
\(B_{\nu}(T)\)
n3:hasDimensionVector
n6:A0E0L2I0M1H0T-2D0
n3:informativeReference
http://pds-atmospheres.nmsu.edu/education_and_outreach/encyclopedia/planck_function.htm http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680008986_1968008986.pdf http://www.star.nesdis.noaa.gov/smcd/spb/calibration/planck.html
n3:isoNormativeReference
http://www.iso.org/iso/catalogue_detail?csnumber=31890
n3:latexDefinition
The Planck function, \(B_{\tilde{\nu}}(T)\), is given by: \(B_{\nu}(T) = \frac{2h c^2\tilde{\nu}^3}{e^{hc / k \tilde{\nu} T}-1}\) where, \(\tilde{\nu}\) is wavelength, \(h\) is Planck's Constant, \(k\) is Boltzman's Constant, \(c\) is the speed of light in a vacuum, \(T\) is thermodynamic temperature.