This HTML5 document contains 65 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n2http://qudt.org/vocab/quantitykind/
n4http://qudt.org/vocab/unit/
n3http://qudt.org/schema/qudt/
skoshttp://www.w3.org/2004/02/skos/core#
n9http://qudt.org/vocab/dimensionvector/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n8http://qudt.org/2.1/vocab/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
xsdhhttp://www.w3.org/2001/XMLSchema#

Statements

Subject Item
n2:InternalEnergy
rdf:type
n3:QuantityKind
rdfs:label
Internal Energy
rdfs:isDefinedBy
n8:quantitykind
rdfs:seeAlso
n2:Energy n2:HelmholtzEnergy n2:GibbsEnergy n2:Enthalpy
owl:sameAs
n2:ThermodynamicEnergy n2:EnergyInternal
skos:broader
n2:Energy
n3:abbreviation
int-energy
n3:applicableUnit
n4:KiloCAL n4:W-SEC n4:CAL_IT n4:KiloJ n4:GigaW-HR n4:AttoJ n4:FT-LB_F n4:GigaJ n4:CAL_TH n4:MegaV-A_Reactive-HR n4:FT-PDL n4:MegaV-A-HR n4:TeraJ n4:KiloEV n4:BTU_TH n4:MegaTOE n4:PlanckEnergy n4:ERG n4:TeraW-HR n4:MegaW-HR n4:TonEnergy n4:EV n4:V-A_Reactive-HR n4:MilliJ n4:THM_US n4:V-A-HR n4:THM_EEC n4:E_h n4:KiloV-A_Reactive-HR n4:FemtoJ n4:KiloV-A-HR n4:QUAD n4:PetaJ n4:W-HR n4:TOE n4:ExaJ n4:MicroJ n4:MegaEV n4:KiloW-HR n4:GigaEV n4:BTU_IT n4:MegaJ n4:KiloBTU_TH n4:KiloBTU_IT n4:J
n3:dbpediaMatch
http://dbpedia.org/resource/Internal_energy
n3:exactMatch
n2:ThermodynamicEnergy n2:EnergyInternal
n3:hasDimensionVector
n9:A0E0L2I0M1H0T-2D0
n3:informativeReference
http://en.citizendium.org/wiki/Internal_energy
n3:latexDefinition
For a closed thermodynamic system, \(\Delta U = Q + W\), where \(Q\) is amount of heat transferred to the system and \(W\) is work done on the system provided that no chemical reactions occur.
n3:normativeReference
http://www.iso.org/iso/catalogue_detail?csnumber=31890
n3:plainTextDescription
"Internal Energy" is simply its energy. "internal" refers to the fact that some energy contributions are not considered. For instance, when the total system is in uniform motion, it has kinetic energy. This overall kinetic energy is never seen as part of the internal energy; one could call it external energy. Or, if the system is at constant non-zero height above the surface the Earth, it has constant potential energy in the gravitational field of the Earth. Gravitational energy is only taken into account when it plays a role in the phenomenon of interest, for instance in a colloidal suspension, where the gravitation influences the up- downward motion of the small particles comprising the colloid. In all other cases, gravitational energy is assumed not to contribute to the internal energy; one may call it again external energy.
n3:symbol
U